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Fluctuations of orientational order and clustering in a two-dimensional colloidal system under
quenched disorder
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Using both video microscopy of superparamagnetic colloidal particles confined in two dimensions and
corresponding computer simulations of repulsive parallel dipoles, we study the formation of fluctuating
orientational clusters and topological defects in the context of the KTHNY-like melting scenario under quenched
disorder. We analyze cluster densities, average cluster sizes, and the population of noncluster particles, as well
as the development of defects, as a function of the system temperature and disorder strength. In addition,
the probability distribution of clustering and orientational order is presented. We find that the well-known
disorder-induced widening of the hexatic phase can be traced back to the distinct development characteristics of
clusters and defects along the melting transitions from the solid phase to the hexatic phase to the isotropic fluid.
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I. INTRODUCTION

The controversy about the microscopic process controlling
melting in two dimensions has lasted for several decades.
According to the widely accepted theory by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY) [1–5],
two-dimensional (2D) melting is a sequence of two continuous
phase transitions. The solid and isotropic fluid phases are
separated by an intermediate anisotropic fluid phase with
quasi-long-range sixfold orientational order, called the hexatic
phase. The KTHNY scenario further suggests that the two
continuous transitions are driven by the dissociation of
thermally activated topological defects [2,5]. Given the sixfold
symmetry of a triangular lattice, a dislocation constitutes a
topological defect which consists of a pair of particles with
five and seven nearest neighbors, respectively. Following the
predictions of the KTHNY theory, dislocations are bound into
neutral pairs in the solid phase, and orientational order is
long-range; i.e., the orientational correlation function attains
a finite value. As pointed out by Mermin [6], the translational
order of the crystalline state is only quasi-long-range due to
long-wavelength fluctuations. Mediated by the unbinding of
dislocation pairs into isolated dislocations, the transition to the
hexatic phase takes place at a temperature Tm [4]. Although
translational order is destroyed by the presence of isolated
dislocations, orientational order persists in the hexatic phase
on a quasi-long-range scale [3,4]. Thus, in the hexatic phase,
the orientational correlation function decays algebraically as
a function of the separation distance. The transition from the
hexatic to the isotropic fluid phase at the temperature Ti > Tm

is marked by the unbinding of dislocations into single five- and
sevenfold point defects, which are referred to as disclinations.
In the isotropic fluid, orientational order vanishes and the
orientational correlation function decays exponentially.

Alternative approaches to melting in two dimensions have
been conceived where the melting process is modeled as
a single first-order transition [7,8]. However, throughout
numerous experimental and simulation studies, the KTHNY
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theory could not be consistently verified or refuted [9].
Instead, evidence was found that the melting process strongly
depends on the pair interaction of the system at hand [10].
While systems governed by very short-range or hard-core
interactions are reported to exhibit coexisting phases [11–13],
thus contradicting the notion of a continuous transition,
reports on soft repulsive particles in two dimensions favor
the KTHNY scenario [14–16]. For particles interacting via
long-range dipolar interactions scaling with the inverse cube
of the particle separation, the KTHNY scenario has been
unambiguously confirmed [17–19]. Video-microscopy exper-
iments on superparamagnetic colloidal particles pending at an
air-water interface, where an external magnetic field induces
dipolar moments perpendicular to the surface, have verified the
predictions of the KTHNY scenario in detail [20,21], including
the elastic properties related to the mechanism of defect
unbinding [22]. Furthermore, this setup was studied after a
quench by instantaneously increasing the external magnetic
field [23–25]. Thereby, crystallization occurred without any
evidence of the hexatic phase. Instead, the local formation
of crystallites, which gradually merged into larger crystalline
patches, leads to a polycrystalline state [23].

According to theoretical predictions by Nelson and cowork-
ers, the two-stage melting scenario persists in the presence
of weak disorder [26,27], and the stability range of the
hexatic phase widens with increasing disorder. While Ti is
predicted to be largely unaffected by disorder, Tm decreases
with increasing disorder until, eventually, no crystalline state
can be established [26]. While the original work suggested
a reentrant melting at low temperatures in the presence of
disorder [26], later works revised this idea and a final prediction
of the stability range of the ordered (i.e., solid) phase in
the temperature-disorder plane was stated in [28]. Further
numerical studies confirmed the topography of the ordered-
disordered phase diagram [29], albeit the hexatic phase was not
resolved. Experimental realizations of colloidal systems under
quenched disorder were explored, where quenched disorder
was embodied by larger particles dispersed in an array of
smaller particles. Thereby, the solid phase exhibited the prop-
erties of an hexatic glass [30]. Static and dynamic properties
of the crystalline state in the presence of a random pinning
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potential were studied in [31]. Additionally, the properties
of a disorder-induced glass transition have been thoroughly
accounted for [32–34]. Recent studies on experimental model
systems like magnetized monolayers [35] or single-layer
complex plasmas [36] have increased our understanding of
the 2D crystallization process.

In a previous work [37], we proposed an experiment on
superparamagnetic colloidal particles on a substrate, where
quenched disorder is realized by randomly pinning particles to
the substrate. Probing different regions of the sample with
varying fractions of pinned particles, the melting process
was analyzed for various degrees of disorder. Thus, the
specific dependency of the transition temperatures Ti and
Tm on disorder predicted in [26] and [27] was verified
and a broadening of the hexatic phase could be observed.
Furthermore, computer simulations on parallel dipoles in
two dimensions were conducted, which exhibited very good
agreement with the experimental data.

In this paper, we extend our previous findings on the
disorder-induced melting process [37] with a detailed analysis
of orientational clusters which show strong fluctuations in
time. The development of these clusters is discussed globally
and locally as a function of the induced disorder in the
form of particle pinning. Dealing with fluctuations on various
length scales in continuous 2D melting, this is an essential
part of understanding the conservation of the continuous
nature of the transitions in the presence of weak induced
disorder. In the isotropic liquid phase, the emergence of small
clusters corresponds to strongly fluctuating patches of high
orientational order, which gradually merge into bigger clusters
at lower temperatures. The emergence of a single cluster
spanning the entire system occurs close to the isotropic →
hexatic transition. As discussed in [37], the orientational order
parameter exhibits spatiotemporal critical(-like) fluctuations
close to the isotropic-hexatic transition and throughout the
hexatic phase. In the coarsened picture of orientational
clusters, these fluctuations correspond to regions excluded
from clusters. Albeit the description of orientational clusters is
formally similar to the analysis of heterogeneous crystallites in
a quenched colloidal system as explored in [23], orientational
clusters are not invoked by a quench of the system but rather
exhibit the nature of the continuous transition. As we observe
in computer simulations and experiment, the number and
size of these clusters display characteristic properties in the
isotropic fluid, hexatic fluid, and solid phase. Analyzing setups
with varying degrees of quenched disorder, the broadening
of the hexatic phase can be traced back to inhibited cluster
formation. As indicated by a comparison of our results to bulk
reference simulations, the formation of orientational clusters
is not induced by the presence of pinned particles but can be
observed in a pure system as well. The analysis of the density
of topological defects indicates that the widened stability range
of the hexatic phase reported in [37] is in fact associated
with an increased abundance of isolated dislocations. This
is consistent with the KTHNY scenario, which predicts that
isolated dislocations emerge in the hexatic phase and that
quenched disorder triggers the unbinding of dislocation pairs.
Additionally, we present further analysis of our experimental
and numerical data supporting the continuous nature of the
isotropic-hexatic phase transition.

The paper is organized as follows: In Sec. II, we describe
the experiment. The simulation technique is reported in
Sec. III. Section IV contains a description of our methods and
introduces the definition of clusters. Our analysis of cluster
formation and the finite-size behavior of global orientational
order is given in Sec. V. Topological defects are analyzed in
Sec. VI. Finally, Sec. VII provides the conclusion.

II. EXPERIMENTAL SETUP

We study a suspension of superparamagnetic colloidal
particles in two dimensions. Confined within a cylindrical
glass cell of 5-mm diameter, the particles sediment due to
gravity and form a monolayer on the bottom glass plate.
Quenched disorder is imposed by the pinning of a small
amount of particles which are attached to the glass substrate
due to van der Waals interactions and chemical reactions. The
particles have a diameter of d = 4.5 μm and a mass density
of 1.7 kg/dm3. The short-time lateral diffusion constant on
the glass substrate is D = 0.0295 μm2/s and the Brownian
time scale corresponds to τB = (d/2)2/D ≈ 170 s. Although
thermal tearing or the creation of new pinning connections
does alter the distribution of obstacles, the pinned parti-
cles remain fixed on the time scale of our measurements
(≈60 τB). Applying an external magnetic field H perpen-
dicular to the substrate plane, dipole moments are induced.
Due to the parallel alignment of dipoles, the pair interaction
scales with the inverse cube of the particle separation. The
pair interaction strength can be readily expressed by the
dimensionless parameter [38]

� = μ0 (χH )2

4πa3kBT
, (1)

where a is the mean particle distance, χ denotes the magnetic
susceptibility, and kBT is the thermal energy. The definition
a = (πn)−1/2 allows us to calculate the dipolar distance
dependence of the pair potential from the 2D particle number
density n (including a geometrical prefactor). By changing
the magnetic field, the system can be effectively “heated”
or “cooled” homogeneously. We study the melting process
in three sample regions with varying pinning fractions,
ranging from approx. 0.5% to 0.8%. While the entire system
comprises >105 particles, each monitored region contains
≈5 × 103 particles. The colloidal ensemble is melted from an
equilibrated crystalline state by decreasing H in small steps.
After each step, the system is allowed to equilibrate for at least
24 h before particle trajectories are recorded for 2.7 h via video
microscopy [39].

III. SIMULATION

Additionally, we perform computer simulations of point-
like superparamagnetic particles in two dimensions which
interact via the purely repulsive pair potential of parallel
dipoles. Standard metropolis Monte Carlo (MC) simulations
were conducted on the NAT ensemble, with A denoting the
area of the square simulation cell. The particle number was
fixed at N = 16 000 and periodic boundary conditions were
applied. Particle interactions are calculated via the truncated
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and shifted potential,

U (rij ) =
{

�((rij /a)−3 − (rc/a)−3), rij < rc,

0, rij � rc,
(2)

where the cutoff radius rc/a = 10 is chosen. The initial state
of the simulation is obtained by successively attempting to
place particles at random positions within the simulation cell,
while the minimum distance between particles is restricted
to rij � a. The resulting configurations corresponds to an
isotropic liquid of hard disks with a packing fraction of 0.25%.
Quenched disorder is introduced by pinning a randomly chosen
subset of particles to their initial position and rendering them
immobile for the entire simulation run. Within statistical
accuracy, this procedure models the distribution of pinning
sites observed in the experiment. Each particular pinning
fraction is sampled with at least 15 statistically independent
distributions of pinned particles. Although typically MC
methods are employed to study static properties in equilibrium
states, the underlying phase-space sampling provides a suitable
means for studying dynamic processes too [40]. To estimate
the Brownian time scale in terms of MC sweeps (i.e., attempted
moves per particle), the diffusion of particles is observed in
a dilute bulk suspension. Thus, we find that the experimental
Brownian time τB corresponds to ≈36 MC sweeps. Starting in
the isotropic fluid phase (�−1 = 0.0167), a full freezing and
melting cycle is conducted for each pinning configuration.
Note that during this process, the particular distribution of
pinned particles remains fixed. At each step of �, the system is
equilibrated for up to 5 × 105 MC sweeps (≈13 800 τB), after
which data are acquired over 105 MC sweeps. For each pinning
fraction explored, the observables obtained at a given value of
� are averaged over all sample realizations of disorder. As a
reference, the same freezing and melting cycle is conducted
for a pure bulk system, where all particles are mobile.

IV. METHODS

Sixfold orientational order can be expressed in terms of the
bond order parameter

ψ6,j = 1

nj

nj∑
k=1

ei6θjk , (3)

where the sum goes over all nj nearest neighbors of particle
j , and θjk is the angle of the kth bond with respect to a
certain reference axis. For a particle embedded in a perfect
hexagonal crystal at zero temperature, the magnitude of ψ6 is
1. It decreases as the neighbor particles deviate from their ideal
lattice positions, e.g., almost vanishes for a five- or sevenfold
coordinated defect. Here, nearest neighbors of a particle are
determined via the Voronoi construction. In order to analyze
orientational clusters and fluctuations of the order parameter,
we consider the local time-averaged director �6,i ,

�6,i(t) = 1

	t

∫ t

t−	t

ψ6,i(t
′)dt ′. (4)

For both experiment and simulation, the averages are con-
ducted over a time frame 	t/τB � 50. Furthermore, the global

FIG. 1. (Color online) Simulation snapshots illustrating orien-
tational clusters close to the fluid → hexatic transition (�−1 =
0.0149). The field of view corresponds to 450 × 450 μm (≈7%
of the simulation cell). (a) Voronoi cells color-coded based on the
time-averaged local orientational order parameter �6(t). Colors are
specified by the bar at the left. Crosses indicate the positions of pinned
particles. (b) Orientational director field, where the complex number
�6,i(t) is shown as a 2D vector, the size of which corresponds to the
magnitude of �6,i(t). Outlines of clusters are indicated in black.

time-averaged director �6 is defined by

�6(t) = 1

N

N∑
i=1

�6,i(t). (5)

Orientational clusters are determined via two criteria. First, for
a particle to be included in a cluster at time t , the time-averaged
order parameter has to meet the criterion

|�6,i(t)| � 0.5. (6)

If particle i is included in a cluster, so may be a neighboring
particle j , if it meets criterion (6) and the sixfold director has
a common orientation. Therefore, we consider the angle φij

between the real projection of �6,i(t), �6,j (t) and impose the
limit

cos(φij ) = �6,i · �6,j

|�6,i ||�6,j | � 0.984. (7)

The application of these two criteria is illustrated in Fig. 1.

V. CLUSTER ANALYSIS

Applying the criteria introduced in the previous section to
the data recorded in computer simulation and experiment, the
formation of clusters is examined within the two-step melting
process. Therefore, the reduced transition temperatures �−1

i

and �−1
m are inherited from our previous study [37], where

the KTHNY melting scenario was confirmed for the system at
hand. In the same work, it was shown that there is a broadening
of the hexatic phase for increased pinning fractions (see Fig. 2).
While �−1

i is hardly affected, �−1
m shifts from ≈0.0146 to

≈0.0144 as the pinning fraction is increased from 0.1% to
0.5%. These findings are based on an analysis of the spatial
and dynamic bond order correlation function. Furthermore,
we analyzed the orientational correlation time ξt and an
“effective” Frank’s constant KA, which is the modulus of
torsional stiffness in the presence of pinned particles. Our data
indicate that in the presence of disorder, the divergent behavior
of Frank’s constant is shifted to lower temperatures for higher
pinning strengths [37]. Since the divergence of KA coincides
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FIG. 2. (Color online) Phase diagram indicating the solid [blue
(dark gray)], hexatic fluid [red (medium gray)], and isotropic fluid
[yellow (light gray)] phases in the parameter space of the temperature
∝�−1 and pinning strength. Filled symbols represent experimental
data, while open symbols correspond to simulation results [37].

with the hexatic → solid transition, this implies a strong
dependency of Tm on disorder, as proposed in Refs. [26]–
[28]. In the following, we revisit the continuous, disorder-
induced melting scenario in the context of the development
and characteristics of orientational clusters and examine how
the latter are influenced by pinning. Figure 3 illustrates the
formation of clusters in two exemplary systems with pinning
fractions of 0.1% and 0.5%, respectively. Snapshots are shown
at three distinct temperature steps, which, for a pinning fraction
of 0.1%, cover all three phases. In the isotropic fluid phase
close to �−1

i [Figs. 3(a) and 3(d)], a substantial number of
separate clusters can be observed. However, the orientation of

these clusters is strongly heterogeneous. In the hexatic phase
[Figs. 3(b) and 3(e)], the formerly separated clusters have
merged into a large cluster with a homogeneous orientation.
Note that, in general, the formation of a uniform cluster does
not necessarily collapse with the isotropic → hexatic transition
point and is highly dependent on the cluster criteria stated in
Sec. IV.

As reported in [37], orientational order undergoes spa-
tiotemporal fluctuations throughout the hexatic phase. These
critical-like fluctuations occur on time scales beyond the
orientational correlation time and are consistent with the
continuous nature of the phase transition. In terms of ori-
entational clustering, these fluctuating regions correspond to
particles not included in clusters. For further clarification,
computer simulation snapshots illustrating the time evolution
of clusters on different time scales are shown in Fig. 4. We
find the temperature range in which these spatiotemporal
patterns occur to depend strongly on the pinning fraction. At
�−1 ≈ 0.0146, the fluctuations have subsided in the system
with a pinning fraction of 0.1% [Fig. 3(c)], while there are
still substantial fluctuations in the system with a pinning
fraction of 0.5% [Fig. 3(f)]. Starting from this qualitative
observation, we systematically study the co-occurrence of
orientational clusters and disordered, fluctuating regions by
tracking several quantities related to the formation of clusters
versus the effective temperature �−1 for various pinning
fractions. First, we measure the abundance of clusters at
each specific temperature step. Therefore, the number of
clusters is averaged over an observation window of ≈10τB

for the experimental data and >2000 τB for the simulation
data. In the computer simulation, the result is additionally

FIG. 3. (Color online) Simulation snapshots of exemplary configurations for pinning fractions 0.1% (a–c) and 0.5% (d–f). Voronoi cells are
shown for particles included in clusters. The color-code corresponds to the bar at the left, based on the normalized product �6,i · �6/(|�6,i ||�6|).
Crosses indicate the positions of pinned particles. At � = 0.0148, both systems are in the isotropic fluid phase; the transition to the hexatic
phase occurs at � = 0.0147. At � = 0.0146, the system with less pinning enters the solid phase (c), while the system with a higher pinning
fraction remains in the hexatic phase (f) and fluctuations persist.
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FIG. 4. (Color online) Fluctuating clusters in the hexatic phase
(�−1 = 0.0147, 0.5% pinning). (a) Cluster configurations at three
time steps: t0 [black], t0 + 35τB [medium blue (gray)], and t0 + 70τB

[light blue (light gray)]. Voronoi cells are shown for particles included
in a cluster. (b) Cluster configurations at three time steps: t1 [black],
t1 + 700τB [medium blue (gray)], and t0 + 1400τB [light blue (light
gray)]. Snapshots are from the computer simulation.

averaged over all realizations of disorder for a specific pinning
fraction. Our results are shown in Fig. 5; note that in order
to account for the different system sizes in experiment and
simulation, the cluster number is normalized with respect to
the average total particle number 〈N〉. For both experiment and
simulation, we observe that in the fluid phase, the number of
clusters NC is high. Close to the isotropic → hexatic transition
temperature �−1

i ≈ 0.0147, the number decreases sharply and
saturates towards small values close to 1 throughout the hexatic
phase. Correspondingly, the normalized number of clusters
approaches 0. This behavior corresponds to the observation of
cluster formation in Fig. 3. Additionally, our results capture
the influence of pinning disorder on the abundance of clusters:
The number of clusters observed at a pinning fraction of 0.5%
systematically exceeds the one observed at 0.1% pinning over
a broad, intermediate temperature interval, which coincides
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FIG. 5. (Color online) Average of the normalized number of
orientational clusters 〈NC〉/〈N〉 versus the effective temperature for
different pinning strengths. Experimental data are plotted with filled
symbols, while open symbols represent numerical data. Lines are
guides for the eye. The temperature range of the hexatic phase for
0.1% pinning is highlighted in red (medium gray); the widening of
the hexatic phase at 0.5% pinning is illustrated in light red (light
gray). Inset: Closeup of the average cluster number.
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FIG. 6. (Color online) Top: Average ratio 〈ρC〉 of particles outside
of clusters versus effective temperature. Inset: Closeup of the behavior
in the hexatic phase. Bottom: Average size 〈AC〉/〈N〉 of clusters stated
as a fraction of the average total particle number. Experimental data
are plotted with filled symbols; open symbols represent numerical
data. Lines are guides for the eye. As in Fig. 5, the temperature
range of the hexatic phase is highlighted in red (gray) for two distinct
pinning fractions.

with the widened temperature range of the hexatic phase. This
picture is supported by the analysis of fluctuating disordered
regions, i.e., regions excluded from clusters. We track the
average number density of particles which are excluded
from clusters versus the effective temperature, at which the
averaging routine depicted above is applied. For every time
step, the number of particles excluded from clusters is detected
and divided by the total number of particles. The resulting
number density ρC is averaged over all time steps in the
observation window. Our results are shown in Fig. 6 (top).
We find that the ratio of particles excluded from clusters is
close to 1 in the isotropic fluid, drops sharply around �−1

i ,
and approaches 0 at lower temperatures. In agreement with
the previous discussion, an increase in the pinning fraction
results in a weaker decay of this ratio below �−1

i ; i.e., a
given ratio of excluded particles is maintained over a broader
temperature interval than in the case of lower disorder. Again,
this temperature interval collapses with the broadened regime
of the hexatic phase reported in [37].

As the third quantity, the average size of clusters is shown
in Fig. 6 (bottom) for various pinning fractions. The average
number of particles included in a single cluster is stated as a
fraction of the average total particle number 〈N〉. This analysis
indicates that the formation of clusters spanning the entire
system is inhibited by pinning disorder. Instead, the division
of the system into a multitude of clusters persists over a broader
temperature interval such that, on average, clusters are smaller.
Note that for the experimental data, there is less averaging and
the average size of clusters fluctuates strongly. However, the
qualitative influence of pinning disorder is captured by both
experimental and numerical data. The qualitative resemblance
of cluster formation in the pure case and in the presence of
disorder implies that the emergence of fluctuating orientational
clusters is intrinsic to the two-stage melting scenario, not just
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FIG. 7. (Color online) Left: Computer simulation snapshot illus-
trating the subdivision into regions close to (I) and far from (II)
pinned particles. Right: Instantaneous value of the order parameter
ψ6 in regions I and II versus the effective temperature �−1. Lines
correspond to computer simulation data (pinning fraction, 0.5%);
experimental data are represented by symbols (crosses, region I;
circles, region II; pinning fraction, 0.48%).

an effect introduced by the presence of pinned particles. As
reported in [37], an increase in the pinning fraction induces
a shift of Tm towards lower values. Here, this behavior is
reflected by the inhibited formation of orientational clusters.

For a closer investigation of the impact of pinning disorder
on the formation of orientational clusters, we introduce
a subdivision of the system into three regions. Region I
represents the vicinity of pinned particles and comprises
all particles within a radius of 8d around a pinning site
(including the pinned particles themself). Region II contains
all particles which are more than 24d away from the closest
pinning center, thus being presumably unaffected by pinning
disorder. Particles contained in neither region I nor region
II are neglected for the purpose of the following analysis.
The subdivision of the system according to these criteria is
illustrated in Fig. 7 (left). We analyze the magnitude of the
instantaneous bond orientational order parameter ψ6 in regions
I and II, respectively. Our results are shown in Fig. 7 (right).
A general trend can be observed: On average, orientational
order is reduced in the vicinity of pinned particles (region
I) compared to distant particles (region II). This effect is
especially pronounced in the hexatic and solid phase. No
significance can be detected in the isotropic fluid phase, which
is expected to be caused by the intrinsic large degree of disorder
in an isotropic system.

As a further step, we consider the conditional probability for
a particle being part of a cluster, given the fact that the particle
belongs to region I or II, respectively (Fig. 8). Thereby, we
observe that in the isotropic fluid, particles in region I are
in fact slightly more likely to be included in a cluster than
particles in region II. Thus, the emergence of small clusters at
T > Ti occurs preferentially in the vicinity of pinned particles.
However, this behavior is inverted at lower temperatures. In
the hexatic and solid phase, where single clusters cover large
parts of the system, particles in the neighborhood of pinning
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FIG. 8. (Color online) Conditional probability that a particle
belongs to a cluster given that it is located in region I (triangles)
or region II (squares) versus effective temperature �−1. Data were
obtained with computer simulations; the pinning fraction corresponds
to 0.5%. Lines are guides for the eye. The temperature range of the
hexatic phase is highlighted in light red (gray).

sites are significantly less likely to be part of a cluster. Thus,
at low temperatures, pinned particles inhibit the formation of
clusters by deteriorating orientational order in their vicinity,
while they stabilize orientational order at high temperatures.
This result is in good agreement with a previous analysis of
the dynamic properties of particles in regions I and II [37].
Thereby, it was found that the long-term dynamics of particles
close to pinning sites is inhibited in the fluid phase, while in the
solid phase, particles in region I exhibit increased dynamics
compared to those in region II. Interestingly, increased or
decreased dynamics are correlated to low or high orientational
order, respectively.

In order to verify the continuous nature of the phase
transition, we calculate the probability distribution p(�2

L) of
the squared order parameter �2

L. We perform a finite-size
analysis by considering various subcell sizes, L = 1/2, 1/4,
1/8, and 1/16, where L states the side length of a subcell
as a fraction of the side length of the total system. For
a continuous phase transition, we expect the probability
distribution to exhibit a single peak for all temperatures and
on all length scales. Our results are shown in Fig. 9 and are in
agreement with the continuous nature of the melting process.
The probability distribution of p(�2

L) is shown for a broader
range of temperatures for the fixed subcell size L = 1/4 in
Fig. 10.

VI. DEFECT ANALYSIS

Following the KTHNY theory, the 2D melting process is
driven by the unbinding of topological defects. Specifically,
bound dislocation pairs break into isolated dislocations above
Tm, marking the solid → hexatic transition. Above Ti ,
dislocations dissociate into single disclinations. The existence
of isolated dislocations (i.e., pairs of five- and sevenfold
defects) leads to quasi-long-range orientational order and is the
fingerprint of the hexatic phase. We approach the hexatic phase
by tracking the density of defects, in particular, the number
of isolated dislocations. Numerically, isolated dislocations
are identified as a fivefold and a sevenfold defect particle
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FIG. 9. (Color online) Finite-size analysis of the probability
distribution of �2

L calculated for subcells of side length L (stated
as a fraction of the total box length). Curves are shown for computer
simulation data; the pinning fraction corresponds to 0.5%. (a)
�−1 = 0.0148: isotropic fluid phase, where the peak of the probability
distribution is located at �2

L = 0. (b) �−1 = 0.0147: fluid → hexatic
transition, where the peak shifts to intermediate values of �2

L. (c)
�−1 = 0.0146: hexatic phase.

which are Voronoi neighbors, and additionally, both have
exactly one defect particle in their neighborhood (which is the
respective counterpart). Thus, we exclude entangled chains,
grain boundaries, and agglomerations of defect particles.
However, as discussed in [14], this definition does not exclude
close but nonadjacent pairs of dislocations, which, for a
sufficiently large Burgers circuit, yield a 0 Burgers vector.
Furthermore, the application of periodic boundary conditions
affects the counting of defect particles [14]. Since these sources
of miscounting affect all our data, a qualitative comparison
between defect densities at different pinning fractions is still
valid. Additionally, we track the density of bound dislocations,
which are as well defined in a way that excludes entanglements
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FIG. 10. (Color online) Probability distribution of �2
L for simula-

tion (left) and experiment (right) for L = 1/4 (stated as a fraction of
the total system dimension). During the crossover from isotropic
to hexatic fluid, the location of the peak shifts from �2

L = 0 to
intermediate values. The distribution has a single distinct peak,
indicating a continuous transition. The pinning fraction is 0.5% in
the simulation and 0.48% in the experiment.
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FIG. 11. (Color online) Defect density 〈Ndef〉/〈N〉 versus effec-
tive temperature. The number of particles forming bound dislocations
(squares), isolated dislocations (triangles), or single five- or sevenfold
disclinations (circles) is stated as a fraction of the total particle
number. Data correspond to computer simulations with pinning
fraction 0.1% [open (blue) symbols] and 0.5% (filled black full
symbols). Lines are guides for the eye. The common temperature
range of the hexatic phase for both pinning fractions is highlighted
in red (medium gray). For 0.5% pinning, the widened range of the
hexatic phase is shown in light red (light gray). Inset: Closeup on the
defect density in the (widened) hexatic phase.

and agglomerations of defects. Therefore, we track adjacent
pairs of dislocations with no additional defect particles in
the Voronoi neighborhood. Finally, single disclinations are
tracked, where five- and sevenfold disclinations are treated
alike. Figure 11 depicts the recorded defect densities in the
computer simulation for two pinning fractions versus the
effective temperature. The densities stated are calculated as
the total number of particles involved in topological defects of
the given kind, Ndef, divided by the total number of particles
N . For example, 1 isolated dislocation among 100 particles
yields a density of 0.02, and 1 bound dislocation among 100
particles yields 0.04. In some analogy to findings reported
in [14], we observe that not only single disclinations, but
also (isolated) dislocations are abundant in the isotropic fluid
phase as well. Below the transition temperature to the hexatic
regime, the density of both single disclinations and isolated
dislocations decays, while the density of bound dislocations
rises, indicating the formation of bound dislocation pairs.
We find that increasing the fraction of pinned particles from
0.1% to 0.5% leads to a slight systematic increase in all the
defect densities, which reflects the fact that pinned particles
severly impair translational order. Since, in general, pinned
particles are not placed at ideal lattice positions, additional
defects have to be introduced in order to accommodate them
in a crystal. Furthermore, increasing the fraction of pinned
particles has a pronounced effect on the density of isolated
dislocations. While for a pinning fraction of 0.1%, the density
of isolated dislocations drops sharply at �−1 = 0.0146, a
comparably high density of isolated dislocations is maintained
over a broader temperature interval for a pinning fraction of
0.5%. Corresponding to previous findings, this temperature
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range coincides with the widened range of the hexatic phase
reported in [37]. Thus, the increased density of isolated
dislocations at higher pinning fractions reflects our previous
finding of a broadened hexatic phase on the level of topologic
defects.

VII. CONCLUSIONS

We have presented a detailed analysis of the formation
and dynamics of orientational clusters and the development
of topological defects in the context of the disorder-induced
melting scenario in two dimensions. Our results are obtained
for superparamagnetic colloids whose repulsion strength
can be tuned by an external magnetic field. The colloids
are confined at a water-substrate interface where quenched
disorder is realized by substrate-induced particle pinning. In
addition, corresponding computer simulations of 2D parallel
dipoles have been performed. We find that the formation of
orientational clusters is intrinsically adapted for the two-stage
melting scenario and strongly dependent on the strength
of quenched disorder. While the solid is characterized by
single cluster formation and large cluster sizes, the cluster
density and the number of particles outside of clusters increase
sharply in the hexatic phase and saturate in the isotropic fluid.
The average cluster size decreases continuously towards the
hexatic-isotropic transition and drops to 0 in the isotropic fluid.
Throughout the melting process (especially at the solid-hexatic
transition), quenched disorder favors the formation of multiple
clusters and, equivalently, reduces the average cluster size,
but simultaneously the number of particles which do not
belong to a cluster increases. This reduces the orientational
correlation in space and time due to cluster fluctuations and
is directly reflected in the local probability analysis where
we detected a reduced cluster formation in the proximity
of pinned particles in the solid phase, while clusters are
preferentially formed close to pinned particles in the isotropic

fluid. In this context, the widening of the hexatic phase
due to quenched disorder is directly coupled to the distinct
(disorder-dependent) characteristics of orientational cluster
formation. The development of topological defects shows a
similar effect; especially the creation of isolated dislocations
is strongly increased by quenched disorder at the solid-hexatic
transition.

Future works should address the effect of long-range
quenched potentials, which were originally discussed by
Nelson [26], and short-range disorder, e.g., fluctuations of
quenched external potentials on the scale of particle diameters
[32]. This could be explored via various kinds of external
potentials on different length scales, from strong pinning via
light fields [41] to weak attractive interactions on precisely
structured substrates. Alternatively, density functional theory
[42–44] or the phase-field crystal model [45] could be a
starting point to describe the hexatic phase [46–48], which
could, in principle, be formulated also for quenched disorder
[49,50]. The behavior of an externally disturbed system
under nonequilibrium conditions, e.g., temperature quenches,
should be of interest: Concerning the competition between
critical fluctuations and first-order characteristics, complex
nonequilibrium relaxation dynamics might be induced by
quenched disorder. In the absence of disorder, such systems
were studied in both one-component [25] and two-component
[24] systems and revealed interesting properties. Last, but not
least, other types of disorder should be explored systematically,
including rough disordered substrates and disorder which is
not quenched on the time scale of the measurements.
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